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Abstract 

In 1981, Beukers used a hypergeometric method for proving that the well-known 
generalized Ramanujan-Nagell equation 

,prime,2 ppCx n=+  

has at most one solution in positive integers x and n, where C and p are  
previously fixed, with a few exceptions. 

In this note, we give an elementary proof of this result when n is even as well as 
the complete solution of a such equation when C is a power of 2009. Moreover, we 
prove that the previous result is surprisingly connected with the title equation, 
which allow us to find all solutions for that equation. 
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1. Introduction 

The Diophantine equation 

,3,1,1,2 ≥≥≥=+ nyxyCx n  (1.1) 

has a rich history and it has attracted the attention of several 
mathematicians. Several papers have been written on this topic, specially 
for particular values of C. The first non-trivial result is due to Lebesgue 
[21] and date back to the 1850. He proved that the above equation has no 
solutions for .1=C  In 1965, Ko [18] proved that if ,1−=C  then the only 
solution is ( ) ( ).3,2,3,, =nyx  In 2004, Tengely [31] solved the above 

equation with 2BC =  and { }.501,,4,3 …∈B  The case when ,kpC =  
where p is a prime number, was studied for ,2=p  in [5, 19, 20], for 

3=p  in [6, 7, 22], for 5=p  in [1, 2] and for 7=p  in [24]. Some 
advances on an arbitrary prime p appear in [8]. The equations 

nyCx =+2  with 1001 ≤≤ C  were completely solved in [12]. Also, the 

solutions when x and y are coprime ,52,32 baba CC ⋅=⋅=  and 
baC 135 ⋅=  can be found in [3, 23, 25], respectively. The more recent 

progress on the subject concerns to cases ,112,115 baba CC ⋅=⋅=  

,1132 cbaC ⋅⋅=  can be found in [13, 14, 15]. 

Also, several authors become interested in Equation (1.1) when the 
variable y is replaced by a positive integer number. The equation 

,2 ntCx =+  

where C and t are given integers, is called the generalized Ramanujan-
Nagell equation. For instance, there is quite an extensive literature 
concerning the equation 

,prime,2 ppCx n=+  (1.2) 

beginning for the case 7=C  and ,2=p  which was posed in a work of 
Ramanujan [28, 29], in 1913 and first solved by Nagell [27] in 1948. The 
case 11=C  and 3=p  was treated by Cohen [16] in 1976. Consult its 
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very extensive annotated bibliography for additional references and 
history. As a final remark, we point out that, in 1960, Apéry [4] showed 
that Equation (1.2), when ,Cp  has at most two solutions. 

Here, we are particularly interested in solving the Diophantine 
equation 

.1323 22 kmn =+⋅−  (1.3) 

We prove that the possible solutions for the above equation are related to 
the solubility of the generalized Ramanujan-Nagell equation for .9=t  
Our first result is the following: 

Theorem 1.1. Let C be a positive integer. Then the Diophantine 
equation 

,322 nCx =+  (1.4) 

has at most one solution in positive integers x and n. 

It is important to pay attention that Equation (1.4) has solution only 
when 2,0≡C (mod 3). 

After, we shall combine two powerful techniques in number theory, 
namely, the Baker’s theory on linear forms in logarithms and some tools 
from Diophantine approximation, due to Baker and Davenport to find a 
general method for solving Equation (1.4) for values of C previously fixed. 
As application of it, we derive the following: 

Theorem 1.2. The Diophantine equation 

,32009 22 ntx =+  (1.5) 

has no solution in positive integers ,, tx  and n. 

Finally, we prove: 

Theorem 1.3. The only solutions of the Diophantine equation 

,1323 22 kmn =+⋅−  

in positive integers m, n, and k, are those related to ,nm =  i.e., ( )kmn ,,  

( ).13,, −= nnn  



GERVASIO G. BASTOS and DIEGO MARQUES 94

We point out that our method is quite general and can be applied by 
replacing 3 in the title equation by any odd prime number p. 

2. The Diophantine Equation  
nCx 22 3=+  

2.1. The proof of Theorem 1.1 

It is important to get noticed that Beukers [10, 11] proved that 
Equation (1.2) (and consequently, Equation (1.4)) has at most one solution 

except when ( ) ( )2,3, =Cp  or ( ),13,14 22 ++ tt  for a positive t. In all 

these exceptional cases, the pair ( ) ( )1,1, =nx  is a direct solution and so 
Theorem 1.1 is according to Beukers result. He used refined techniques 
on hypergeometric methods for proving these results. 

Here, we will present an elementary demonstration of the Theorem 1, 
which was discovered by Professor F. A. Germano who has communicated 
us his nice proof by e-mail. 

Proof. Suppose that nmyx and,,,  are positive integer numbers 

such that mCx 22 3=+  and .322 nCy =+  We shall show that nm =  
and consequently, .yx =  First of all, we note that 

( ) ( ) ( ) ( ).3333 yyCxx nnmm −+==−+  

Without losing any generality, we can suppose ( ) ( ) .13,gcd3,gcd == xC  

In fact, we have ,3,3 bCax vu ==  where uabba ,3,, N∈  and v are 
nonnegative integer numbers. Hence 

.333 2222 mvu baCx =+=+  

Of course, { }.,2max2 vum ≥  Set { },,2min vu=A  we have 

≤≤ vu,2A  m2  and ( ) .3333 222 mvu ba =+ −− AAA  We then conclude that 

either vu == A2  or ( ).333 22 ba vu AA −− +  In the first case, we have 

( ),322 umba −=+  (2.1) 



ON THE DIOPHANTINE EQUATION … 95

with 0>− um  and whence it is enough to prove the theorem for 

Equation (2.1). In the second case, we infer that ,1331 22 >+= −− ba tvtu  

which is absurd. 

We have then ( ) ( ) ( ),3233 rrxxC mmm −⋅=+−=  where =< r0  

.33 mm x <−  Thus, if ( )mx,  is a solution of (1.4), we get an integer 

number mr 30 <<  such that ( )rrC m −⋅= 32  and .3 r  Therefore, for 

another solution ( )ny,  of (1.4), there exists nn ys 330 <−=<  such 

that ( )ssC n −⋅= 32  and .3 s  

We claim that .nm =  Towards a contradiction, we may suppose 
mn >  (the other case can be handled in much the same way). This 

implies that .30 mrs <<<  Indeed, if ,sr ≤  then <⋅<−⋅ mm r 3232  

,33 1 nm ≤+  yielding 

( ) ( ) ,323332 CsssrrrC nnnm =−⋅<⋅≤⋅<−⋅=  

which is a contradiction. 

Also, the relation ( ) ( )rrss mn −⋅=−⋅ 3232  implies that r and s 

have the same parity, since 22 rs ≡ (mod 2). By considerations modulo 

,3m  it is easy to deduce that 22 rs ≡ (mod m3 ) and so ( ) ( ).3 srsrm +−  

Recall that the numbers sr −  and sr +  cannot be both multiples of 3 

(otherwise r3  and s3 ). It follows that sr ±≡  (mod m3 ), which yields 

{ } .3,3,32,3,0,3,32,3, 11 Zmmmmmmmsr =⋅−⋅−−∈± ++ ……  

Since ,30 mrs <<<  we get msr 320 ⋅<±<  and therefore, 

,3msr =±  but this is absurd because sr ±  is even (keep in mind that r 
and s have the same parity). Thus nm =  as desired.  

   
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2.2. The proof of Theorem 1.2 

2.2.1. Auxiliary results 

Before proceeding further, we recall some results, which will be very 
useful in what follows. 

The main idea for proving the Theorem 1.2 is to use bounds à la 
Baker for a suitable linear form in three logarithms and then to deduce 
an upper bound on t. From the main result of Matveev [26], we extract 
the following result: 

Lemma 1. Let 321 ,, ααα  be real algebraic numbers and let 321 ,, bbb  
be nonzero integer rational numbers. Define 

.logloglog 332211 α+α+α=Λ bbb  

Let D be the degree of the number field ( )321 ,, αααQ  over Q  and let 

321 ,, AAA  be real numbers, which satisfy 

{ ( ) } .3,2,1,16.0,log,max =αα≥ jforDhA jjj  

Assume that 

 { { }}.31;max,1max 1 ≤≤≥ jAAbB jj  

Define also 

 ( ( ( ))).log3log2.206750000 25.54
1 eDDeC +⋅=  

If ,0≠Λ  then 

 ( ( )).log5.1loglog 321
2

1 eDeDBAAADC−≥Λ  

As usual, in the previous statement, the logarithmic height of an                           
s-degree algebraic number α  is defined as 

( ) ( { ( ) }),,1maxloglog1

1

j
s

j
ash α+=α ∑

=

 

where a is the leading coefficient of the minimal polynomial of α  (over 

Z ) and ( ( ) ) sj
j

≤≤α 1  are the conjugates of .α  
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After finding an upper bound on t, which is general too large, the next 
step is to reduce it. For this purpose, we need a variant of the famous 
Baker-Davenport lemma, which is due to Dujella and Pethö [17]. For a 
real number x, we use { }N∈−= nnxx :min  for the distance from x 
to the nearest integer. 

Lemma 2. Suppose that M is a positive integer. Let qp  be a 

convergent of the continued fraction expansion of the irrational number γ  

such that ,6Mq >  and let ,qMq γ−µ=  where µ  is a real number. 
If ,0>  then there is no solution to the inequality 

,0 mBAnm −⋅<µ+−γ<  

in positive integers m, n with 

( ) .log
log MmB

Aq
<≤

  

See Lemma 5 (a) in [17]. 

Now, we are ready to deal with the proof of our result. 

2.2.2. The proof 

Finding a bound on k. First, note that t in Equation (1.5) must be odd, 

say ,12 +k  because 1,02 ≡x  (mod 3) and 12009 −≡ (mod 3). So, 
Equation (1.5) can be rewritten in the form: 

( ) ( ).332009 12 xx nnk +−=+  (2.2) 

Since x3  (because 20093 ), we get 

{ } { } { },49,41or2009,13,3 121212 +++=+− kkknn xx  

which leads to equations 

,1200932 12 =−⋅ +kn  (2.3) 

or 

.414932 1212 ++ =−⋅ kkn  (2.4) 
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Here, we shall work only on the Equation (2.3). The proof that 
Equation (2.4) has no solution proceeds along the same lines. 

We point out that Equation (2.3) has no solution when 12 += kn  
even, if we replace 3 by any arbitrary prime number p. This fact is an 
immediate consequence of a result due to Bennett [9]. For any positive 
integer a, the equation 

( ) ,11 =−+ nn ayxa  in integers ,3,1,1 ≥≥≥ nyx  

has no solution other than given by .1== yx  

For the remaining cases ( ),12 +≠ kn  we shall use bounds for linear 
forms in three logarithms of algebraic numbers (for more details on 
transcendental methods to Diophantine equations, we refer the reader to 
[30]). 

First, on dividing Equation (2.3) through by ,2009 12 +k  we get 

( ) ( ).20091200932 1212 +−+− =−⋅⋅ kkn  

Let ( ) ( ) ( ) ,2log31log20091log12 +−+=Λ nk  then the previous 

equality becomes ( ) 020091 12 >=− +−Λ ke  and so .0>Λ  Therefore, 
( ) ,20091 12 +−Λ =−<Λ ke  which yields 

( ) .2009log12log +−<Λ k  (2.5) 

Now, we will apply Lemma 1. Take 

.1,,12,2,31,20091 321321 =−=+==α=α=α bnbkb  

Observe that ( ) QQ =ααα 321 ,,  and then .1=D  Surely, we can take 
,3log,2009log 21 == AA  and .2log3 =A  

Note that 

{ { }} { },2009log3log,12max31;max,1max 1 nkjAAb jj +=≤≤  

and then it suffices to choose 12 += kB  as 

,200921200932 1212 ++ ⋅<+=⋅ kkn  and then ( ) .2009log123log +< kn  
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Since, for ,1=D  it holds that ,107.9 9
1 ⋅<C  Lemma 1 yields 

( )( ).1208.4log102.56log 9 +⋅−>Λ k  (2.6) 

Combining the estimates (2.5) and (2.6), we get 

( )( ) ( ) ,2009log121208.4log102.56 9 +>+⋅ kk  

and this inequality implies 11102 ⋅<k  (for the sake of preciseness <k  
101389315227). 

Reducing the bound. Since ,20090 12 −−<Λ< k  we have that 

( ) .2009logloglog120 2
321

knk −<α+α−α+<  

On dividing through by ,log 2α  we get 

( ) ,2009120 2knk −<µ+−γ+<  (2.7) 

with 21 loglog αα=γ  and .loglog 23 αα=µ  

Surely, γ  is an irrational number1 (because 2009 and 3 are 
multiplicatively independent). So, let us denote AA qp  be the -A th 
convergent of its continued fraction. 

In order to reduce our bound on k (which is too large!), we will use the 
Lemma 2. 

For that, take .102 11⋅=M  Since 

,2513579857528
94002478237444

27
27 =q

p  

then .6102.12513579857528 12
27 Mq =⋅>≥  Moreover, a straight 

calculation gives 

                                                      

1Actually, this number is transcendental by Gelfond-Schneider theorem: If α  and β  

are algebraic numbers, with 0≠α  or 1, and β  is irrational, then βα  is transcendental.  
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,03.002760.027 <=γ …qM  

and 

  .33.033016.027 >=µ …q  

Hence 

.3.003.033.02727 =−>γ−µ= qMq  

Thus, all the hypotheses of the Lemma 2 are satisfied with 1=A  and 

.20092=B  It follows from that lemma that there is no solution of the 
Diophantine equation (2.2) in the range 

( ) [ ].102,2,1log
log 1127 ⋅=



 +



 MB

Aq   

Thus k = 1, which is absurd, since 4054243365 is not a power of 3. 
This completes the proof.   

3. The Proof of Theorem 1.3 

Note that if ,nm =  then ( ) .131323 22 −=+⋅− nnn  If k is positive, 

then ( ) ( )13,,,, −= nnnkmn  is solution for (1.3) for all positive integer 
n. Our goal is to prove that this one is the only possibility. 

For that, in order to facilitate our work, we shall denote n
nm

2
, 3=δ  

,132 +⋅− m  and let knm ,,  be positive integer numbers such that nm,δ  

.2k=  First, take kp n += 3  and .3 kq n −=  So, we have ,1≥> qp  
nqp 32 ⋅=+  and .132 −⋅= mpq  Now, if 13 −= mx  and ,3 kqy n =−=  

we get 

,33and313 kpqypqx nnmm =−=−=−=−=  

yielding 

( ) ( ) ( ) ( ).3333 yypqxx nnmm −+==−+  
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Thus ( )nx,  and ( )my,  are solutions of Equation (1.4) with .pqC =  
Hence, we apply the Theorem 1.1 to get nm =  and this completes our 
proof.    
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